翻訳と辞書 |
Honda–Tate theorem : ウィキペディア英語版 | Honda–Tate theorem In mathematics, the Honda–Tate theorem classifies abelian varieties over finite fields up to isogeny. It states that the isogeny classes of simple abelian varieties over a finite field of order ''q'' correspond to algebraic integers all of whose conjugates (given by eigenvalues of the Frobenius endomorphism on the first cohomology group or Tate module) have absolute value √''q''. showed that the map taking an isogeny class to the eigenvalues of the Frobenius is injective, and showed that this map is surjective, and therefore a bijection. ==References==
* * *
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Honda–Tate theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|